Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38568976

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Receptors, Cholinergic , Synapses , Synapses/metabolism , Receptors, Cholinergic/metabolism , Synaptic Transmission/physiology , Motor Neurons/metabolism , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism , Neurotransmitter Agents/metabolism , Cholinergic Agents , Receptors, Presynaptic
2.
Nat Commun ; 7: 10194, 2016 Jan 07.
Article En | MEDLINE | ID: mdl-26738816

Engineered nucleases have transformed biological research and offer great therapeutic potential by enabling the straightforward modification of desired genomic sequences. While many nuclease platforms have proven functional, all can produce unanticipated off-target lesions and have difficulty discriminating between homologous sequences, limiting their therapeutic application. Here we describe a multi-reporter selection system that allows the screening of large protein libraries to uncover variants able to discriminate between sequences with substantial homology. We have used this system to identify zinc-finger nucleases that exhibit high cleavage activity (up to 60% indels) at their targets within the CCR5 and HBB genes and strong discrimination against homologous sequences within CCR2 and HBD. An unbiased screen for off-target lesions using a novel set of CCR5-targeting nucleases confirms negligible CCR2 activity and demonstrates minimal off-target activity genome wide. This system offers a straightforward approach to generate nucleases that discriminate between similar targets and provide exceptional genome-wide specificity.


Deoxyribonucleases/metabolism , Gene Expression Regulation, Enzymologic/physiology , Receptors, CCR5/metabolism , Zinc Fingers , Animals , DNA-Binding Proteins/genetics , Deoxyribonucleases/genetics , Genes, Reporter , Genome , Humans , Peptide Library , Receptors, CCR2/metabolism
...